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Eigenvalue problems and Matlab  

For N-DOF system represented by: 

      0M x K x 
  

…(35)

 
 

When the response is harmonic { } { }sinx X t , then: 

   
     K X M X

          
…(36) 

Equation (36) is called generalized eigenvalue problem. Pre-multiplying both sides of 

eq. (36) by [M]
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 results in: 

          
1

[ ]M K X I X


   …(37) 

Equation (37) can be re-written as: 

  0 D I X   …(38) 

 Where D is the system dynamic matrix 1D M K . Equation (38) is standard Eigenvalue 

problem. For N-DOF system, eq. (38) can be solved by LR or QR methods which 

provide stability of the calculations are perhaps the best known methods for 

Eigensolution. 

Matlab ready function eig(K,M) or eig(D) can be used to obtain Eigenvalues and 

Eigenvectors from known mass and stiffness matrices. Where eig(K,M) can be used to 

directly evaluate Eigensolution for eq. (36) and eig(D) can be used for standard 

Eigenvalue problem as given in eq. (38). 
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Note: Equation (38) sometimes named as characteristics equation of matrix D. In 

general, if we have two square matrices A and B then both AB and BA have the same 

characteristic equation. 

 

Example-7 

 For the system shown in Figure below, find the Eigenvalues and Eigenvectors using 

Matlab: 

 

Solution: 

1 1

2 2

2 0 2 0

0 3 0

2 0 2 0 2 2 1
,

0 0 1 3 1 3

x xm k k

x xm k k

m k k
m k

m k k

        
         

        

        
          

        
M K

 

Assuming harmonic motion: 

    2
2 1 2 0

1 3 0 1
k X m X where  

   
    

   
  

Using
m

k
    , the above equation can be written as: 

   
2 1 2 0

1 3 0 1
X X

   
   

   
  

The above equation can be cast into Eigenvalue problem. Using Matlab code:  

K = [2 -1;-1 3]; 

M = [2 0; 0 1]; 

mu = eig(K,M); %calculate eigenvalues only 

[X,EV] = eig(K,M); %calculate eigenvectors and eigenvalues 

 

2k k k 
m 2m 

x1 x2 
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Note: Eigenvectors provided by Matlab are mass-normalized mode shapes. 

Ans:  mu={0.7753; 3.2247} 

X = 

   -0.9121    0.2193 

   -0.4100   -0.9757 

 

EV = 

 

    0.7753         0 

         0    3.2247 

 

Example-8: 

 

 

Solution: 

1 1

2 2

3 3

2 0 0 2 0 0

0 3 0 3 2 0

0 0 0 2 5 0

2 0 0 2 0 0 2 0 2 1 0

0 3 0 0 3 0 , 3 2 1 3 2

0 0 0 0 1 0 2 5 0 2 5

m x k k x

m x k k k x

m x k k x

m k k

m m k k k k

m k k

         
         

   
         
                  

        
       

       
      
              

M K



 

The above equation can be cast into Eigenvalue problem. Using Matlab code:  

K = [2 -1 0;-1 3 -2;0 -2 5]; 

M = [2 0 0; 0 3 0;0 0 1]; 

mu = eig(K,M); %calculate eigenvalues only 

[X,EV] = eig(K,M); %calculate eigenvectors and eigenvalues 

 

2k k k 
3m 2m 

x1 x2 

m 

x3 3k 
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Ans: 

mu = 

    0.4210 

    1.2670 

    5.3120 

 

 

X = 

   -0.3991   -0.5835    0.0175 

   -0.4621    0.3116   -0.1506 

   -0.2019    0.1669    0.9651 

 

 

EV = 

    0.4210         0         0 

         0    1.2670         0 

         0         0    5.3120 

 

Damped MDOF System 

  When damping is negligible the above treatment can be used. However, when damping 

exists, special treatment must be used. 

   In the undamped MDOF systems, we can apply eq. (9) 
.

.
T

rm   ψ Mψ  to uncouple 

mass matrix, or we can use eq. (10) 
.

.
T

rk   ψ Kψ  to uncouple the coupled stiffness 

matrix. Hence, the equation of motion can be uncoupled as a whole. 

  In damped system, we cannot uncouple equation of motion generally. However, there 

is an exception for that problem. When the damping is proportional or so called 

Classical, then equation of motion can be uncoupled using the mode shape matrix 

extracted from the same system assuming zero damping. 

     [ ]{ } 0M x C x K x  
  

…(39)

 
 

  If damping is proportional: 

   [ ]C M K      …(40) 

Or when the damping matrix generally satisfies the following identity (classical 

damping): 
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1 1

1 1

1 1

[ ] [ ]

[ ] [ ]

: [ ] [ ]

K M C C M K

M K C C K M

M C K K C M

 

 

 







or:

or

   …(41) 

 

Then the undamped mode shapes obtained by assuming zero damping, can be used to 

diagonalize damping matrix also: 

 

     [ ] [ ] [ ]T T TM x C x K x  ψ ψ ψ ψ ψ ψ 0    …(42) 

     . . .
. . .r r rm x c x k x               …(43) 

 

Where 
.

.rc 
   is the modal damping matrix or generalized damping matrix. In fact, when 

damping is classical, then Ψ is a planar matrix and can diagonalize damping as well as 

mass and stiffness matrices. Consequently: 

2

, 1

2 2 2

d r r r

r r
r

r r r

c

m

  




 

 

  
    …(44) 

  Where r is the modal damping coefficient of the r
th

 mode. To evaluate the response of 

the system to force, the following equation can be used to evaluate the elements of the 

receptance matrix (to replace eq. (28)): 

2 2

1

( )
2

N

ir jr

ij

r r rr
j

 
 

   



     …(45) 

 

  The same procedure used to derive eq. (28) can be used to derive eq. (45) provided that 

. .
. .[ ] 2

T
r r rc     Φ Φ . 

The uncoupled equation of motion in case of classical damping is given by: 
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( ) ( ) ( ) ( )T

n n n n n n nm q t c q t k q t t   ψ f   (46) 

For n = 1, 2 … N. 

Once eq. (46) is solved for each mode, then eq. (30) can be used to find the response. 

 

Example-9: 

For the system shown below, determine modal damping matrix and find the response to 

the force shown: 

 

Solution: 

 

 

1 1 1 1 2

2 2 2 2 1

( ) 0

2 ( ) 0

mx cx kx k x x

mx cx kx k x x

    

      

In matrix form 

1 1 1

2 2 2

0 0 2 0

0 0 3 0

x x xm c k k

x x xm c k k

            
             

            
 

This is the same system of Example-2 but with added damping 

It is clear that damping is proportional and the modal damping matrix is: 

 

0.618 1 0 0.618 1.618

1.618 1 0 1 1

1.382 0

0 3.618

T c

c

c

c

      
      
     

 
  
 

ψ Cψ

 

2k 
k k 

m m 

x1 
x2 

c c 

F1 



7 

 

 

2

r
r

r r

c

m



   

From Example-2: 1 23.618 1.382
k k

and
m m

 
   

    
   

 

1

2

1.382
so far:

2 3.618
2 1.382 3.618

3.618
and

2 1.382
2 3.618 1.382

c c

k km
m

m

c c

k km
m

m





 



 



 

 

Since F2 = 0, then we have: 

1 11 12 1

2 21 22

( ) ( )

( ) ( ) 0

X F

X

   

   

     
    

    
 

We need to find only 11( )   and 21( )   

Since damping is proportional, the mode shapes are same as undamped systems which 

are evaluated in example-4 as: 

   
1 2

0.618 1.6181 1

1 11.382 3.618
and

m m
 

   
    

   
 

 

Using eq. (37): 
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11 11 12 12
11 2 2 2 2

1 1 1 2 2 2

2 2

2 2 2 2

1 1 1 2 2 2

21 11 22 12
21 2 2 2 2

1 1 1 2 2 2

2 2

1 1 1

( )
2 2

0.618 1.6181 1

1.382 3.6182 2

( )
2 2

1 (1)( 0.618) 1 (1)(1.

1.382 3.6182

j j

m mj j

j j

m mj

   
 

       

       

   
 

       

   

 
   


 

   

 
   


 

   2 2

2 2 2

618)

2 j    

 

 

General Damping Case 

  Generally the solution of eq. (39) (damped MDOS) is given by: 

    stx X e      …(47) 

  Where s is Laplace operator. Assuming zero initial conditions, eq. (39) becomes: 

 

     2 [ ] 0s M s C K X       …(48) 

 

  The Eigenvalues and Eigenvectors of eq. (48) can be found by using state-space 

 
x

y
x

 
  
 

    …(49) 

Hence, equation of motion can be written in terms of state vector y as follows: 

 

0
{ } { } {0}

0 0

:[ ]{ } [ ]{ } {0}

C M K
y y

M M

or A y B y

   
    

   

 
    …(50) 
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Where both A and B are square matrix with dimension 2n×2n. Equation (50) is a 

standard Eigenvalue problem. Since{ } { }y y : 

[ ]{ } [ ]{ }B Y A Y      …(51) 

 

  Here we must remember that for damped SDOF, the characteristics equation has a 

complex conjugate root 
2

1,2 1n n dj j           

Therefore, the characteristics equation of (51) has 2N Eigenvalues in complex conjugate 

form. Also, it has 2N corresponding Eigenvectors that are complex conjugate. 

 

Notes: 

1. The eigenvalues and eigenvectors can be found using Matlab function eig(B,A) 

2. The last n rows of eigenvectors are normally discarded since they are associated 

with x   

3. When damping matrix is proportional, eigenvectors are either in-phase or out of 

phase. Hence, when they are normalized by a certain column element, the result 

will be real eigenvectors. In this case, equation of motion can be decoupled using 

eigenvectors. Also, every point of the system undergoes harmonic motion and 

passes through the equilibrium position simultaneously. 

4. When damping matrix is not proportional, eigenvectors will have phase angles 

from 0 to 180° between them. In this case, the points do not pass through the 

equilibrium position at the same time and there will be phase shift between them 

depending on the complexity of the system. 

 

Example-10: 

For the system shown below, determine eigenvalues, natural frequencies and mode 

shapes: 
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Given that: m = 1 kg, k = 100 N/m  

Solution: 

1 1 1

2 2 2

3 3 3

2 0 0 2 0 0 200 100 0 0

0 3 0 0 0 0 100 300 200 0

0 0 1 0 0 1 0 200 500 0

2 0 0 2 0 0 200 10

0 3 0 , 0 0 0 ,

0 0 1 0 0 1

x x x

x x x

x x x

             
             

    
             
                          

   
   

  
   
      

M C K

0 0

100 300 200

0 200 500

 
 
 
 
  

 

The above equation can be cast into Eigenvalue problem. Using Matlab code:  

K = [200 -100 0;-100 300 -200;0 -200 500]; 

M = [2 0 0; 0 3 0;0 0 1]; 

C = [2 0 0; 0 0 0;0 0 1]; 

Z=[0 0 0; 0 0 0; 0 0 0]; 

  

A=[C M; M Z]; 

B=[K Z;Z -M]; 

lambda=-eig(B,A) 

[Yd,EV] = eig(B,A); %calculate eigenvectors and eigenvalues 

Xd = 100*Yd(1:3,:) 

 

Ans: 

lambda = 

  -0.4660 -23.0415i 

  -0.4660 +23.0415i 

  -0.3541 -11.2384i 

  -0.3541 +11.2384i 

  -0.1799 - 6.4932i 

  -0.1799 + 6.4932i 

 

2k k k 

3m 2m 

x1 x2 

m 

x3 3k 

1 Ns/m 2 Ns/m 
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Xd =  

Columns 1 through 4 

  -0.0071 + 0.0762i  -0.0071 - 0.0762i   0.9600 + 7.7249i   0.9600 - 7.7249i 

   0.0639 - 0.6565i   0.0639 + 0.6565i  -0.0029 - 4.1619i  -0.0029 + 4.1619i 

  -0.1975 + 4.2240i  -0.1975 - 4.2240i   0.0180 - 2.2286i   0.0180 + 2.2286i 

 

  Columns 5 through 6 

   0.4508 +11.7900i   0.4508 -11.7900i 

   1.5005 +13.5659i   1.5005 -13.5659i 

   0.6018 + 5.9335i   0.6018 - 5.9335i 

So far, 

2

1 1 1 1

1 1

2

1 1

2 2

1

1

1 0.1799 6.4932

0.1799

1 6.4932

(6.4932) (0.1799) 6.496

0.1799
0.02769

6.496

j j   

 

 





     



 

   

  

 

Similarly, we can show that: 

 
2 2

3 3

11.244, 0.03149

23.0462, 0.02022

 

 

 

 
  

 

Response of Generally Damped MDOF System 

  We have previously discussed how to calculate the response of harmonic excitation for 

proportional damping case. Now we will discuss how to find the response for any 

damping case. 

For free Vibration: 

2

1

n

r
i r ir

r

t
x c e



     ...(52) 

Here, ir  represents the mode shape i-th element of r-th column and cr depends on 

initial conditions. 
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For forced vibration, Laplace transform method can be used: 

 

       [ ]{ } ( )M x C x K x f t     …(53) 

 

Using Laplace transform with zero initial conditions: 

 

       2 [ ]s M s C K X F    …(54) 

 

Hence: 

        

  

1
2( ) [ ] ( )

( ) ( )

X s s M s C K F s

s F s



  


   …(55) 

With: 

      
    
    

2
1

2

2

[ ]
( ) [ ]

det [ ]

adj s M s C K
s s M s C K

s M s C K


  
   

 
   …(56) 

 

Once  ( )X s   are evaluated, the inverse Laplace transform can be used to find the 

response ( )x t . 

 

H.W: 

Q1: for the system shown below with proportional damping, 

 

Find: 

(a) Natural frequencies and mode shapes 

(b) Mass-normalized mode shapes 

100 
50 50 

1kg 1kg 

x1 
x2 

F1 sinωt  F2 sinωt 

1 Ns/m 1 Ns/m 
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(c) Modal damping matrix 

(d) Responses in terms of the applied forces 

 

Q2: for the following system,  

 

Determine: 

(a) Equation of motion, mass, stiffness and damping matrices 

(b) Eigenvalues and natural frequencies (using Matlab) 

(c) Mode shapes 

2k 
k k 

3m 2m 

x1 x2 

m 

x3 

3k 

1 Ns/m 2 Ns/m 1 Ns/m 

m=1kg, k=60 N/m 


